
September 1998 The Delphi Magazine 13

Integrating With
Outlook And Exchange
by Berend de Boer

In this article I investigate how
you can write programs with

Delphi 3 which integrate with
Microsoft Outlook and Exchange
Client. The focus will be on Out-
look. When something doesn’t
work with Exchange Client it is
explicitly mentioned.

There are four different types of
Exchange/Outlook client exten-
sions. Firstly there are command
extensions: these add new com-
mands to Outlook’s menubar or
toolbar. Secondly, event extensions
enable developers to add to or
override behaviour, such as the
arrival of new messages, reading
and writing messages, sending
messages, reading and writing
attached files and tracking selec-
tion changes in a window. Next we
have property sheet extensions:
useful for displaying custom form
property sheets. Finally, Advanced
criteria extensions extend Out-
look’s search capabilities.

In this article I’ll cover the first
client extension type. I’ll show you
how to add your menu items to
Outlooks menubar, and how to add
buttons to its toolbar. I’ll also show
something of Outlook’s program-
ming model. With Outlook it’s
quite easy to get information, like
which folders exist, the subjects or
receive dates of messages and so
on. And best of all, without having
to resort to MAPI.

These days, everything is COM
in the Microsoft World and that’s
true for Outlook too. So to inte-
grate with Outlook we need to
implement a COM interface, the
IExchExt interface. As you see from

the naming, this interface is inher-
ited from the Exchange Client days
so a lot will work under Exchange
too. Outlook has one big advantage
over Exchange: accessing folders
and mail, subject, recipients, etc, is
a lot easier than under Exchange.

First Example
Let’s first implement the famous
Hello World example. We’ll add a
menu item to Exchange and when
you choose it, you will get a Hello
World dialog box. This example
does work with both Outlook and
Exchange, so I’ll use the word
Exchange in this example and
mean both Microsoft MAPI clients.
There is a minor difference
between Outlook and Exchange in
this respect. Exchange loads exten-
sions at startup, Outlook can load
them when required. This will not
affect the examples I present here.

Exchange client extensions live
in DLLs. Each DLL needs to have an
entry point, a procedure which is
exported with the ordinal 1.
Exchange calls this procedure
when it loads the DLL. The name of
this entry point is not important,
only its ordinal. I’ve called it
ExchEntryPoint. ExchEntryPoint
needs to return the COM object
which implements the extensions.
This COM object should imple-
ment the IExchExt interface (see

IExchExt

Install Enables an extension object to determine the context into
which it is being loaded, along with information about
that context.

➤ Table 1

Table 1). The most simple entry
point looks like this:

function ExchEntryPoint:
IExchExt; cdecl;

begin
Result := TExchExt.Create;

end;

Unfortunately, it’s not quite as
simple as this. Due to a bug in
Delphi’s compiler we need to write
more complicated code, as you
can see in the examples.

The IExchExt interface has just
one method: Install. This method
returns True (or in COM terms
S_OK) when this extension runs in a
certain context. Examples of con-
texts are the viewer context (that
is, Exchange’s main window), the
remote viewer context, the
address book context and the
property sheet window context. So
if you want to add a menu item you
should return S_OK when Exchange
asks you if you run in the EECON-
TEXT_VIEWER context. Every context
has a unique number, assigned by
Microsoft, prefixed by EECONTEXT_.
A simple implementation of
Installwhich wants to be active in
Exchange main window looks like
Listing 1.

So now you have informed
Exchange that you can do some-
thing in the context viewer
window. To actually do something
there, you have to implement
another interface, the IExchExt-
Commands interface (see Table 2).
This interface has some more
methods, seven in total. In this first

function TExchExt.Install(eecb: IEXCHEXTCALLBACK; mecontext: ULONG; ulFlags:
ULONG): HResult;

begin
case mecontext of
EECONTEXT_VIEWER : Result := S_OK;

else
Result := S_FALSE;

end; { of case }
end;

➤ Listing 1



14 The Delphi Magazine Issue 37

example, we only need to imple-
ment two of them. The first is
InstallCommands. In InstallCom-
mands you can add menu items to
Exchange’s or Outlook’s menubar.
The code looks like that shown in
Listing 2.

In the first line we use the
Exchange callback interface to
retrieve the handle to the Tools
submenu. The Exchange callback
interface can be used to retrieve
information about Exchange’s cur-
rent state: see Table 3 for its inter-
face. In the next lines we append
the menu item Hello World 1 to this
menu. You can use the standard
Win32 API command AppendMenu to
accomplish this. You may not
choose any command number you
want. Exchange passes the first
command you want to use in
cmdidBase. If you have added a
menu item you must increment it,
so Exchange knows that you did
indeed add something. Outlook
even deletes menu items you have
added, if you didn’t increment
cmdidBase properly! I store the
command number my menu item
is bound to in MyCommandNum. We will
need it later.

The menu item is now shown,
but nothing happens when a user
selects it. When a user chooses a
menu item (or toolbar button),
DoCommand is called with the com-
mand number. You need to
implement DoCommand to add func-
tionality to your menu items. An
example DoCommand implementa-
tion is shown in Listing 3.

As you see I’ve used the com-
mand number I’d saved in MyCom-
mandNum to see if it really is my
command. You need to return S_OK
if you did handle a command, else
return S_FALSE.

For this first example I’ve imple-
mented two more methods: Query-
HelpText and Help. QueryHelpText
shows status line help in the
Exchange Client (not within Out-
look) and Help is called when a
user chooses What’s this and
selects your menu item or toolbar
button. Both get the command
which is selected and you use an If
statement similar to the one
shown in DoCommand to see if it really
is your command.

function TExchExt.InstallCommands(
eecb: IEXCHEXTCALLBACK;
hwnd: HWND;
hmenu: HMENU;
var cmdidBase: UINT;
lptbeArray: LPTBENTRY;
ctbe: UINT;
ulFlags: ULONG): HResult;

var
r: HResult;
hMenuTools: Windows.HMENU;

begin
r := eecb.GetMenuPos(EECMDID_ToolsOptions, hMenuTools, nil, nil, 0);
// add our extension command
MyCommandNum := cmdidBase;
AppendMenu(
hMenuTools,
MF_BYPOSITION and MF_STRING,
MyCommandNum,
'Hello World 1');

Inc(cmdidBase);
Result := S_OK;

end;

➤ Listing 2

IExchExtCommands

InstallCommands Enables an extension to install its menu commands
or toolbar buttons.

InitMenu Enables an extension to update its menu items when
the user begins using the menus. You could for
example enable/disable menu items.

DoMenu Carries out a menu or toolbar command chosen by
the user.

Help Provides user help for a command. It’s called when
a user chooses What’s this from the Help menu and
clicks the menu item or toolbar button.

QueryHelpText Provides status bar or tool tip Help text for a
command. Only visible with the Exchange Client,
not with Outlook.

QueryButtonInfo Provides information about the extension’s toolbar
buttons.

ResetToolbar Enables an extension to restore its toolbar buttons
to their default positions.

➤ Table 2

function TExchExt.DoCommand(eecb: IEXCHEXTCALLBACK; cmdid: UINT): HResult;
begin
if cmdid = MyCommandNum then begin
ShowMessage('Hello World 1!');
Result := S_OK;

end else
Result := S_FALSE;

end;

➤ Listing 3

The final step is to register your
DLL within Exchange Client or Out-
look. Make sure there is a registry
entry

HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Exchange\Client\
Extensions

Sometimes the Extensions key is

not present, so you need to create
it. Next add a registry value to the
Extensions key. The name of the
value is your description. The
value itself looks like this:

4.0;e:\winnt\system32\

helloworld1.DLL;1;010000;1000000

The value is a semicolon separated



16 The Delphi Magazine Issue 37

file. The first value is the Exchange
Client level you want to be active
in. The value can be either 4.0 or
5.0. Next comes your DLL location.
The third field contains the ordinal
of the exported function which
Exchange should call. This value
can be left empty, it defaults to 1.
This is the ordinal of our
ExchEntryPoint function.

The bit values in position 4 and 5
are optional. Field 4 is called the
ContextMap, field 5 the Interface-
MAP. The ContextMAP tells Exchange
in which contexts your DLL is
active, so Exchange can load the
DLL only when needed, see Table
4. The InterfaceMAP tells Exchange
which interfaces you have imple-
mented, see Table 5. Exchange is
able to find out all this, but telling it
beforehand could improve
performance.

IExchExtCallback

GetVersion Returns the version number of the Microsoft Exchange application.

GetWindow Returns a window handle corresponding to the specified flag.

GetMenu Returns the Microsoft Exchange menu handle for the current window.

GetToolbar Returns a toolbar’s window handle.

GetSession Returns an interface to the current open MAPI session and associated address book.

GetObject Returns an interface and store for a particular object.

GetSelectionCount Returns the number of objects selected in the window.

GetSelectionItem Returns the entry identifier of a selected item in a Microsoft Exchange window.

GetMenuPos Returns the position of a command or set of commands on the Microsoft Exchange menu.

GetSharedExtsDir Returns the Microsoft Exchange shared-extensions directory.

GetRecipients Returns a pointer to the recipient list of the currently selected item.

SetRecipients Sets the recipient list for the currently selected item.

GetNewMessageSite Returns interface pointers to the message site and view context of the selected message.

RegisterModeless Enables extension objects that display modeless windows to coordinate with windows
displayed by the Microsoft Exchange client.

ChooseFolder Displays a dialog box that enables users to choose a specific message store and folder.

➤ Table 3
Outlook has an additional way to

register extensions. They are
called Extension Configuration
files (.ECF). I suggest you stay away
from them as they are not well
documented and do not really add
anything important. But if you
want to give it a try, take a look at

www.microsoft.com/msdn/news/
feature/032598/ecf.htm.

To summarize: the steps you need
to take to implement an Exchange
Client extension are as follows.
First, create a DLL with the ExchEn-
tryPoint; this DLL should return a
pointer to the IExchExt interface.
Secondly, implement the IExchtExt
interface. Thirdly, implement the
IExchExtCommands interface. Lastly,
register your DLL so Outlook or Ex-
change Client knows about it.

Position Context Position Context

1 EECONTEXT_SESSION 8 EECONTEXT_SENDPOSTMESSAGE

2 EECONTEXT_VIEWER 9 EECONTEXT_READPOSTMESSAGE

3 EECONTEXT_REMOTEVIEWER 10 EECONTEXT_READREPORTMESSAGE

4 EECONTEXT_SEARCHVIEWER 11 EECONTEXT_SENDRESENDMESSAGE

5 EECONTEXT_ADDRBOOK 12 EECONTEXT_PROPERTYSHEETS

6 EECONTEXT_SENDNOTEMESSAGE 13 EECONTEXT_ADVANCEDCRITERIA

7 EECONTEXT_READNOTEMESSAGE 14 EECONTEXT_TASK

➤ Table 4: Context Map Bit Positions

You can find the complete imple-
mentation on the companion disk
in project HelloWorld1, our DLL,
and ComHelloWorld1, the implemen-
tation of IExchExt and IExchExtCom-
mands. The implementation could
be quite simple because Delphi
allows us to implement more than
one interface in an object (no need
to implement QueryInterface for
example).

Second Example
In the second example I will
expand a bit on the previous exam-
ple. I’ll show you how to add a
button to the toolbar and how to
add a menu item in a different con-
text. The most interesting thing,
however, is that I will give you a
glimpse of how you can program
Outlook. This example, except
adding the button and menu items,



September 1998 The Delphi Magazine 17

Position Interface

1 IExchExtCommands

2 IExchExtUserEvents

3 IExchExtSessionEvents

4 IExchExtMessageEvents

5 IExchExtAttachedFileEvents

6 IExchExtPropertySheets

7 IExchExtAdvancedCriteria

➤ Table 5:
Interface Map
Bit Positions

is specific for Outlook, you cannot
use it with Exchange.

Outlook’s COM interface is quite
easy to use. You can find it in the
type library MSOUTL8.OLB. On the
disk with this issue you will find it
as the file Outlook_TLB.pas. Every
item in Outlook is covered by a
separate object. The application
as a whole is covered by the Appli-
cation object. A mail message is
covered by the MailItem object, a
contact is covered by the Contac-
tItem object. Outlook objects have
visual and non-visual methods.
Many Outlook objects, for example
MailItem and NoteItem have a Dis-
play method to display a certain
message of their class.

You can completely program
Outlook not only from within your
Exchange Extension, but also from
any OLE Automation controller.
This is quite useful to debug parts
of your Exchange Extension as it is
easier to step through code within
a Delphi form than using the exter-
nal debugger to step through an
Exchange Extension.

As an example, let’s create a new
entry in the Contacts folder (see
Listing 4).

Let’s take a look at the source
code for the second example.
Example2.dpr is the DLL, and Com-
HelloWorld2 is the implementation
of the IExchExt and IExchExtCom-
mands. Because this extension
should run only within Outlook,
IExchExt.Install has a check to
see if it’s called from Outlook.

Adding menu items is done as in
the first example. One thing is dif-
ferent: I add a menu item only to
the New Message window, not to
Outlook’s main window. To add a
menu item (and toolbar button)
only in the New Message window,
and not in Outlook’s main window,
I store the current context within
IExchExt.Install. When IExchExt-
Commands.InstallCommands is called
next, I use it to decide if I have to
add the menu item or not.

Adding a button to the toolbar is
a two step process. First make the
button image available, and
second install the button. Making
the button image available is done
when IExchExtCommands.Install-
Commands is called. In the main

resource file of example 2, Exam-
ple2.RES, I’ve added two button
images with the names 101 and 102.
Within InstallCommands I use these
names to add the proper image to
the toolbar list of images. Reserv-
ing a command number, incre-
menting the cmdidBase parameter,
is done within InstallCommands.

After that IExchExtCommands.Que-
ryButtonInfo is called with various
parameters, the most important is
ptbb, a pointer to a PTBButton struc-
ture. The properties of ptbbhave to
be set to display the button.

IExchExtCommands.DoCommand con-
tains the actual implementation of
manipulating Outlook. I’ve written
three examples. In Outlook’s main
toolbar a new button has appeared
with the number 1 on it. If you click
it, the subjects of all messages in
the current folder are written to
the field dump.txt in your tempo-
rary directory. In the new message
window a new button has
appeared with the number 2 on it. If
you click this one a journal item of
type E-mail message is created and
displayed. You can save or cancel
it. As the last item under the Tools
menu of the new message window
you find the Create a contact item.
If you select it, a new contact is cre-
ated and saved immediately. Go to
your Contacts folder to see it.

Registering example2.dll is done
similarly to the first example. The
correct registration key is:

var
app: Application;
ci: ContactItem;

begin
app := CoApplication.Create;
ci := app.CreateItem(olContactItem) as _DContactItem;
ci.FullName := 'Berend de Boer';
ci.CompanyName := 'NederWare';
ci.Save;

end;

➤ Listing 4

4.0;c:\winnt\system32\
Example2.DLL;1;010001;1000000

Compiling The examples
To be able to compile the exam-
ples, you need some libraries on
your search path. For the standard
Exchange Extensions you need
access to the MAPI headers.
Inprise didn’t translate them, but
luckily a good guy named Alexan-
der Staubo provided a very com-
plete translation. You can find his
translation at

Www.mop.no/~alex/
technical_delphitrans.html

This translation is included on the
companion disk (in the mapi subdi-
rectory of the directory for this
article).

You also need the header for the
Exchange Extension interface,
which I’ve partly translated. You
find it also in the mapi subdirec-
tory as ExchExt.pas.

You can translation the outlook
object library from MSOUTL8.OLB,
included with Office 97, but it’s
also included with the source for
this article as Outlook_TLB.pas in
the Outlook subdirectory. This
directory also contains two other
files you need MSForms_TLB.pas
and Office_TLB.pas

The examples are in the
Example1 and Example2 subdirec-
tory. Both directories have a



18 The Delphi Magazine Issue 37

compileit.bat file and a dcc32.cfg
file. This should make compiling
the sources a breeze.

Conclusion
I hope to have given you a good
start in writing Exchange Exten-
sions. We did cover a lot, but there
is also a lot we didn’t cover. Like
writing Event Extensions. In the fol-
lowing resource section some
pointers are given which give more
information about the subjects we
discussed, but also to subjects we
didn’t.

Information Resources
The main guide for the Exchange
Extension programmer is the
Extending the Microsoft Exchange
Client guide. You can find it on the
MSDN CD. It’s also available online
at the time of writing, at

Http://premium.microsoft.com/isapi/

Devonly/prodinfo/msdnprod/

msdnlib.idc?theURL=/msdn/library/

Sdkdoc/cx-01_6s1f.htm

Also you can find a good FAQ
regarding MAPI and Exchange
Extension programming at

Www.angrygraycat.com/goetter/
mdevfaq.htm

You can get a good understand-
ing of how to things ought to be
done when programming Outlook
at

www.microsoft.com/OutlookDev/
Articles/Outprog.htm

From browsing through Out-
look_TLB.pas you get a good
understanding of things which are
possible with Outlook. There is
also a help file, vbaoutl.hlp, which
covers all objects and properties.
This helpfile can be found on
the Office 97 CD in the
/VALUPACK/MOREHELP directory.

Berend de Boer is President of
Nederware, a software engineer-
ing firm in the Netherlands and
can be contacted by email at
berend@pobox.com


	First Example
	Second Example
	Compiling The examples
	Conclusion
	Information Resources

